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Abstract—With the growing energy demands from server
farms, it becomes necessary to understand the tradeoffs between
energy consumption and application performance. Typically,
server farms are provisioned for peak load even when they
are mostly operating at low utilization levels. This results in
wasteful energy consumption. At the same time, application
workloads have Quality of Service (QoS) constraints that need
to be satisfied. Optimizing server farm energy consumption with
QoS constraints is a challenging task since the workload can
have variabilities in job sizes, job arrival patterns and system
utilization levels.

In this paper, we present WASP, where we explore techniques
that make smart use of the processor and system low-power
states, and orchestrate their use with workload adaptivity for
more effective energy management. We perform an extensive
study of Energy-Latency tradeoffs with simulations, and evaluate
WASP on a testbed with a cluster of servers. Our experiments
on real systems show that WASP achieves up to 57% energy
reduction over a naive policy that uses a shallow processor sleep
state when there are no jobs to execute, and 39% over a delay-
timer based approach while maintaining the 90th percentile job
service latency to be under 2⇥⇥⇥ job execution time.

Keywords-Cloud Computing; Data Center Energy Optimiza-
tion; Energy-Latency tradeoffs; Processor and System low-power
states; Workload adaptivity

I. INTRODUCTION

Large-scale server farms and data centers account for nearly
2% of the US domestic energy consumption [1]. Most server
farms are provisioned for peak demand, and configured to op-
erate at capacities much higher than necessary [2], [3]. The dis-
proportionality in server utilization versus energy consumption
occurs largely because of ineffective system-wide energy man-
agement and server over-provisioning without understanding
or even considering the workload characteristics. Therefore,
exploring a workload-aware framework that performs effective
system-wide energy management, is essential in server farms.

While server-level energy optimization strategies have been
studied previously [4], [5], [6], system-level energy manage-
ment that can automatically adapt to different applications with
QoS constraints are ever-more important. Techniques such as
Dynamic Voltage/Frequency Scaling (DVFS) only save active
power, and do not take advantage of situations where servers
can enter low-power states to achieve both static and dynamic
energy savings [7]. In other words, DVFS can be useful only in
applications that require the servers to be active at all (or most)
times. For applications that spawn independent tasks (e.g., web
servers), it may not be necessary to keep all servers active

especially when the service requests are relatively infrequent.
This necessitates a more aggressive energy-saving approach.

In this paper, we present WASP, an energy optimization
framework for server farms that is able to adapt itself to meet
the performance demands (QoS constraints) while minimizing
the system energy through dynamically adjusting its parame-
ters based on workload characteristics such as job size, arrival
pattern and system utilization. To achieve energy optimization,
we explore the use of processor and system low-power states
combined with adaptive techniques to orchestrate the entry
and exit from these low-power states. WASP also considers
variations in job arrival rates for bursty workloads where
local spikes in the arrival patterns need to be monitored. This
information can guide WASP to provision servers in shallow
sleep states such that they can be woken up faster and meet
the QoS constraints for tasks.

In summary, the contributions of our work are:

1) We motivate the need to jointly optimize for energy-
latency in server farm applications in an adaptive manner. We
posit that future server farms will need to cater to a variety of
workload patterns, and perform energy optimization subject to
users’ performance demands.

2) We design WASP, a novel energy management frame-
work that orchestrates judicious use of the system energy-
saving features based on system-wide workload characteris-
tics. We explore the energy-latency Pareto-optimal space in
server farms under different system utilization levels and work-
loads, which is then used by WASP for parameter selection.

3) We investigate the applicability of our adaptive energy-
saving schemes to different job arrival patterns: 1. random
arrivals modeled by Poisson Process, and 2. non-bursty and
bursty real system traces. A subset of servers in shallow sleep
states is dynamically provisioned to accommodate spikes in
job arrivals.

4) We perform experimental evaluation on a web server
testbed, and measure system energy. With a QoS constraint
of 90th percentile normalized latency to be under 2⇥ the
job execution time on real systems, WASP exhibits up to
57% energy savings over a naive policy that uses a shallow
processor low-power state during inactive periods, and up to
39% energy savings over a delay-timer based approach where
the processor enters low-power state only after observing
system inactivity for a certain delay period.
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Fig. 1: Energy breakdown for various workloads in A-I and A-I(t)-S configurations using simulation. The latency, normalized with respect
to A-I configuration (N.L.), is shown on top of each bar.

II. BACKGROUND

A. Low-power States and Power Model
Low-power states are now an important feature that is

widely supported in today’s computing systems. The Ad-
vanced Configuration and Power Interface (ACPI) [7] specifies
various processor low-power states Cx (e.g., C1, C6), and
system low-power states Sx. A higher level C state or S state
typically indicates more aggressive energy savings but longer
wake-up latencies. For a multi-core processor, low-power
states are supported at both core and package levels. When
there is no job to execute on a core, it becomes idle and could
reside in a Core C state. When all cores become idle, the entire
processor/package would be resolved to a certain package
sleep state, which further reduces power. Although processor
low-power states can significantly reduce the power consumed
by the processor, the server still consumes a considerable
amount of power as the platform may still remain active.
As a result, in order to achieve even greater energy savings,
system sleep states, that put platform components into low-
power states, are used.

B. Server and Job Model
We model the server farm as a multi-server system that can

process multiple jobs (up to the total number of cores) at a
time. Utilization level factor is defined as the product of the
job arrival rate and the average job execution time, which is
also the fraction of the time that the server is expected to be
busy. We assume that a system-wide load balancer dispatches
jobs to the servers within the server farm. The job latency is
defined as the time elapsed between when a job arrives and
when it finishes execution and departs the server. In this paper,
the 90th percentile job latency is considered as the QoS target.

C. Smart Use of Low-Power States
Processor/system low-power states help reduce energy con-

sumption by shutting down various processor components and
putting devices to power saving mode, especially when the
processor utilization levels are low. However, they can also
introduce significant performance degradation due to extended
wakeup latencies, especially from deep sleep states. Typically,
delay timers are utilized to prevent the servers from going to
deep sleep prematurely and avoid expensive wakeup latencies.

To illustrate the benefits of using sleep states and delay timers
for energy savings, we perform simulation experiments that
study energy consumption of server farms with 100 servers
under two workload settings, a small-latency job (about 5ms)
and a large-latency job (about 200ms). We evaluate using two
power management policies described below.

1) Active-Idle, denoted as A-I, is a power configuration
where the server alternates between active and shallow pack-
age sleep state, C1. A server is active when at least one of the
cores in the processor within the server has a job to process.
The server enters C1 if none of its cores are actively running
jobs.

2) Delay-Doze, denoted as A-I(t)-S, is a power configura-
tion where the server transitions between three states – active,
package sleep C6 (I), and system sleep (S). When all cores
are idle, the server immediately enters I, then goes to S after a
delay of t seconds. If a new job arrives before the delay timer
expires in I, the server would transition back to the active state.

Figure 1 shows the energy breakdown of a server farm using
the above two policies. For each workload, we study both
configurations for system utilization levels of 0.1 and 0.3.
We make the following observations: 1. Utilizing package
and system sleep states can bring energy savings for
both workloads. For example, at utilization level of 0.1, we
observe as much as 13% energy reduction in Workload#1 and
29% energy reduction in Workload#2 with A-I(t)-S compared
to the corresponding A-I configurations. 2. Processor and
system low-power states have to be used judiciously. If
sleep states are used too aggressively, they may considerably
deteriorate the tail latency and waste more energy. Figure 1
shows the energy for A-I(0)-S (where we enter system sleep
mode when idle) is higher and the normalized latency is worse
compared to Active-Idle for both workloads. The results show
that leveraging low-power states in a smart way has good
potential in saving server farm energy.

III. WORKLOAD ADAPTATION

While delay timers are useful in saving energy, we note
that they lack workload awareness. Large values of delay
timers could cause the system to remain in higher power
states for longer than necessary resulting in increased energy
consumption, while too small values for delay timers result in



Server Farm Front End
WASP Power Manager

load < Ts

load > Tw

dispatched         
jobs

Server Farm Power Manager 
Local Server Power Controller

Package
sleep

System 
Sleep

τ seconds

Active Core 
Sleep

Package
sleep

job arrives

job arrives

load monitor & power policy control

Active Server Pool
Sleep Server Pool

Provisioned
Servers

Servers with
Delay Timers

Fig. 2: WASP Power Management Framework

premature entry into low-power states. This can be problematic
on two counts: 1) The transition energy between power states
can be high. 2) The wakeup latencies from low-power states
can degrade system performance.

To incorporate workload-awareness, we explore a two-level
adaptive strategy that controls the active and low-power state
transitions using a local server power controller and a global
server farm power manager.

A. WASP: Workload-Adaptive Algorithm
We now present the design for our WASP framework. As

shown in Figure 2, the server farm power manager in the
front end monitors the current load (number of pending jobs
per server) and sends control commands to the local power
controller. The server farm power manager puts the servers
in either active or sleep modes. The bottom part of Figure 2
presents state transitions coordinated by the local server power
controllers.

TABLE I: Notations in WASP power management algorithm

Symbol Description
Vact servers in active/package sleep mode
Vs servers in system sleep mode
Ts workload threshold to reduce active servers
Tw workload threshold to increase active servers
Np number of provisioned shallow sleep servers
t delay time before entering system sleep

WASP automatically activates servers when the pending
load becomes too high (that could lead to higher average
job latency), and then places servers in low-power sleep
mode to conserve energy when the workload becomes light.
We achieve our goal of balancing energy consumption and
latency by estimating the current load and placing servers in
different power modes. There are two important parameters
in Algorithm 1 that govern transitioning between active and

Algorithm 1: Global Server Farm Power Manager
Input: Ts, Tw, Np, t , n (total number of servers)

1 Initialization: Vact = {s1,s2, ...,sn}; Vs = {};
2 while there are unfinished jobs do
3 if a new job j arrives at time ta then
4 compute load per active server;
5 if load per active server > Tw and |Vs|> 0 then
6 retrieve a server s from Vs;
7 Vact .add(s);
8 create a trans to active mode request tta r;
9 send tta r to server s’s power controller;

10 if a job j finishes at time td then
11 compute load per active server;
12 if load per active server < Ts and |Vact |> 0 then
13 retrieve a server s in Vact ;
14 Vs.add(s) ;
15 create a trans to sleep mode request tts r;
16 if count of shallow sleep servers> Np then
17 tts r.enableDelayTimer(t);

18 else
19 tts r.enableDelayTimer(infinity);

20 send tts r to server s’s power controller;

sleep modes: 1. Ts, workload threshold per active server below
which WASP will put an active server to sleep, and 2. Tw,
workload threshold per active server above which WASP will
wake up an inactive server.

Global Server Farm Power Manager: All servers are
initially in the shallow low-power state, and arriving jobs are
placed in the server’s local job queue. As jobs arrive, the load
per active mode server is computed dynamically by the power
manager in the front end based on the number of jobs sent to
individual servers and the completed jobs. The global server
farm power manager maintains lists of servers in active and
sleep modes. When new jobs arrive, it first checks if current
load per active server is above Tw. If so, it selects a server
in sleep server pool (if available) and sends a power mode
transition request to the active state for that server. When the
load per active server falls below Ts, the power manager selects
an active server and sends a power mode transition request to
enter sleep mode. Algorithm 1 describes the WASP power
manager with its notations shown in Table I.

Local Server Power Controller: The processor transitions
to package sleep state when it becomes idle, and stays in that
state until it receives the request to wakeup from the global
power manager. If the server receives a request for transition
to sleep mode, it will first finish up all the pending jobs in the
local queue and then enters package sleep after which a delay
timer is started. The server enters system sleep upon delay
timer expiration. However, if the scheduler chooses to wake
up the server before timer expiration (e.g., due to sudden load
increase), the timer is reset and the server goes back to active
mode.

For large server farms, we can adopt one of two pos-
sible solutions: 1) Adopt a distributed power management



approach where energy is optimized within individual do-
mains of servers with their own power managers. 2) Adopt
a hierarchical solution with multiple levels of global power
managers. We note that a distributed power management
approach may be more scalable with lower implementation
complexity compared to a hierarchical approach that may
involve longer latencies for decision making and higher book-
keeping overheads for the servers.

B. Adaptive Server Provisioning
Job arrival pattern may have local spikes (bursty), during

which the service latency may suffer, especially when the
servers are in low power modes. To mitigate this problem, we
provision a subset of servers in shallow sleep states dynam-
ically by setting their delay timer values to infinity. WASP
determines the number of provisioned servers dynamically
through measuring the current standard deviation in the job
arrival rate observed over a period of 2 minutes. Specifically,
the server provision module samples the number of arrivals
and calculates the utilization for each sample period (one
second in our current setting). It then uses the sampling
window to determine the standard deviation in the level of
system utilization. The module will provision a ⇥ stdev ⇥
number servers dynamically in shallow sleep state. a is a
tunable parameter. By default we set it to 3.0, since it typically
covers a vast majority of the population (e.g., more than 99%
of the population in Gaussian distribution).

IV. EXPERIMENTAL SETUP

We perform two sets of experiments: 1. simulations to
explore the Pareto-optimal energy-latency tradeoff as well
as corresponding Ts, Tw and t settings, and 2. prototype
implementation on a testbed with web server deployment. In
this section, we elaborate on the experimental setup for both
approaches.
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Fig. 3: Power profile of a 10-core Xeon E5 processor with C0-C1
and C0-C6 transition settings whenever the server is idle.1

A. Processor Power Profile and Server Power Model
We profile the power consumption of the Intel Xeon E-

5 processor [8] using Intel’s Running Average Power Limit

1We use a microbenchmark that can calibrate itself and occupy the core
based on required utilization settings. To occupy multiple cores, we run
multiple copies of this microbenchmark each pinned to a core.

TABLE II: Power (W) breakdown for a system with na active cores

Component Core sleep
C1⇤

Core sleep
C6 †

Pkg. sleep
C6

System
sleep

CPU 33.0+3.1⇥
(na �1)

23.0+3.8⇥
(na �1) 8.3 8.3

RAM [8] 10.8 10.8 4.9 1.4
Platform [9] 45.5 45.5 23.6 4.8

Total Power 89.3+3.1⇥
(na �1)

79.3+3.8⇥
(na �1) 36.8 14.5

⇤ processor is active and the rest of the idle cores are in C1 state.
† processor is active and the rest of the idle cores are in C6 state.

TABLE III: Processor/System low-power states and wakeup latencies

Low-power State Wake-up latency
core sleep C1 10 µs
core sleep C6 82 µs

package sleep C6 1 ms
system sleep 5 s

(RAPL) interface. We build a customized cpuidle governor that
allows specified low-power state transitions. The processor is
programmed to transition between active state (C0) and low-
power state Cx (e.g., C1, C6). Figure 3 shows the measured
power consumption of the processor for two configurations:
C0-C1, C0-C6 and at utilization levels from 0% to 100%.
Using linear regression, a power model is built for the proces-
sor based on the sleep state selection and the number of active
cores at full utilization. Table II shows the power consumption
when a certain state is chosen for sleep mode. Table III shows
the wakeup latencies for various low-power states. Note that
the processor sleep state transition latencies are reported by
the Linux cpuidle driver [10].

B. Simulation Platform

WASP uses an event-driven simulator based on Big-
house [11] that models server farm workloads and multi-server
activity. We simulate a server farm with 100 ten-core servers
(by default). In all of our experimental results, we report the
steady state statistics by disregarding the warm-up period of
the first 10,000 jobs. In the simulation, we use short latency
(Web service-like) jobs with s = 4.2ms and long latency (DNS
service-like) jobs with s = 194ms as representatives based on
prior studies [9]. For each of the representative workloads, we
generate synthetic job arrivals with different utilization levels
(0.1 for low, 0.3 for average [2], and 0.6 for high). Random job
arrivals are modeled by Poisson process [5]. Besides synthetic
workload, we also perform simulation based on Wikipedia
traces.

C. Real System Experiments on Testbed

We deploy a testbed with a cluster of 10 application
servers together with one load-generating server and one
load-balancing server; all servers support Intelligent Power
Management Interface (IPMI) interface [12] for system-level
power monitoring. Each application server is configured with
the apache web service. The load generator keeps sending web
requests to the system according to real system traces (See
Section VI for further details).



V. ENERGY-LATENCY TRADEOFF

We conduct parameter exploration with thousands of sim-
ulator runs for every workload at a given utilization level to
find optimal ranges of Ts, Tw and t values under various QoS
constraints. We study using two synthetic workloads at three
different system utilization levels, and using real system traces
from Wikipedia. In each run, we measure energy consumption,
average job latency, and 90th percentile normalized job latency.
The energy-latency frontier curves are then generated by
eliminating the less-desired pairs which do not lead to Pareto-
optimality. We note that further opportunity may exist if we
combine sleep states with DVFS, that reduces dynamic power.
Therefore, we conduct exploratory experiments to study the
benefits in combining WASP with DVFS to optimize the
energy spent during job execution.

A. Frontier Curves on Random Arrivals
Figure 4 presents the relationship between energy and job

latency under various frequency ( f ) settings.
WASP shows good energy-latency tradeoffs across work-

loads and utilization levels. In Web Service workload at
utilization level of 10%, without any frequency scaling ( f =1.0
is depicted as solid red curves), WASP demonstrates 57%
reduction in energy compared to a naive Active-Idle (A-I)
power management policy (See Section II-C). Note that the
90th percentile normalized latency is within 2.0. At utilization
level of 30%, WASP achieves 39% energy reduction for Web
Service workload. We note that WASP shows a similar trend
in other workloads as well.

Using DVFS in conjunction with WASP improves Pareto
optimality to a limited extent with increased tail latency.
Our results show that, by lowering f to some extent, higher
energy reduction can be achieved without adversely affecting
the latency values. For example, for DNS Service at the high
utilization of 0.6 with f = 1.0, the energy reduction can be
up to 17% when the 90th percentile normalized latency is
2.0. When f = 0.7, energy decreases by another 6% with tail
latency degrading to 3.0. However, if f is lowered too much,
there is a significant deterioration of performance without
a proportional increase in energy savings. Consequently, to
achieve higher energy savings in the active mode using DVFS,
appropriate selection of f is needed. While better energy sav-
ing may be possible by incorporating more intelligent DVFS
control algorithms, we note that the room for improvement is
limited due to the fact that WASP already takes advantage of
system idleness for energy improvement.

B. Frontier Curves on Non-bursty Traces
We obtain publicly available Wikipedia website traces [13]

that include arrival timestamps for each web request along with
the URL. Studies by van Baaren et al. [13] have characterized
the average job service time as 3.5 ms. For our study, we
obtain the arrival timestamps from the traces, and adopt the
job service time distribution from [13]. We simulate a one-
hour Wikipedia trace on a 10-machine configuration. Figure 5
shows the Pareto-optimal curves for energy and latency. WASP

is able to achieve 58% energy saving over Active-Idle with
90th percentile normalized latency below 2.0, which is similar
to the energy reduction observed in the synthetic Web Service
workload in Section V-A.

C. WASP Parameters
A natural question that arises during energy optimization

is: what set of parameter values in the WASP algorithm help
achieve energy-latency Pareto-optimality? Understanding the
characteristics of these parameter values is essential for users
to dynamically configure the system under various workloads
and latency constraints. For each workload, we collect Pareto-
optimal values of Ts, Tw, and t for different utilization levels.
Due to space limitations, we are unable to show all of our
results. We list our key observations below:

1) The values of t that lead to different normalized tail
latencies are fairly independent of utilization levels, but is job-
size dependent. The Pareto-optimal t for Web Service is 0.5s
and t increases with job size, e.g., 10s for DNS Service.

2) The values of Tw are also independent of utilization
levels. Intuitively, Tw controls how fast a server in sleep mode
would transition to active mode. As Tw increases, servers
are woken up less often, which saves energy at the cost of
increased tail latency. This gives hints on why Tw also scales
linearly with latency values.

3) Ts values are independent of job execution latencies and
utilization levels. Moreover, when upper bound of the 90th

percentile normalized latency is set to stringent values such
as 2.0, the values of Tw and Ts are also quite close across
benchmarks.

The characterization of the WASP parameters helps to
optimally select Ts, Tw and t parameters according to the
workload, utilization levels and tail latency requirements in
an automated manner. Our experiments show that our re-
gression model can accurately predict the three parameters
fairly quickly. For verification, we use the regression-derived
parameters (for a specific QoS) and compare the tail latency
and energy consumption with the ones we got from the frontier
curves, and our results showed less than 5% absolute error.

VI. EVALUATION ON REAL SYSTEM

We evaluate WASP on a testbed with 10 Dell Poweredge
servers equipped with Inten Xeon-based processors with all
of the servers deployed on a dedicated rack. We installed a
modified version of the Apache HTTP server for our Local
Power Controller. We extended the Local Power Controller
to also include a Delay-Doze timer. The Global Server Farm
Power Manager is added to an additional apache server with
the mod proxy balancer module used for load balancing.
Specifically, the load balancer performs operating mode tran-
sitions in servers (as discussed in Section III-A); this is done
by sending special HTTP requests (/hostname/trans-to-active-
mode/, /hostname/trans-to-lp-mode) to the application server.
It also monitors the power state for each server, and manages
the server wakeups (from system sleep) using IPMI interface
supported by Dell systems. The special requests are handled
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policy.
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by the local power controller that would determine the server
low-power transitions accordingly. We set up a custom cpuidle
governor which allows direct processor C-state transitions
from userspace (e.g., C0-C6). For power measurement, we
leverage two techniques: the RAPL interface for fine-grained
component power, and the IPMI’s system power management
interface for coarse-grained server power. We evaluate the
effectiveness of WASP by providing two sets of workloads
to the system: the non-bursty Wikipedia workload, that does
not require server provisioning, and four bursty NLANR
workloads [14], that require server provisioning to handle
bursty workloads (See section III-B).

A. Wikipedia Trace

We performed real system energy measurements by deploy-
ing Wikipedia software stack, namely Wikipedia application
(Mediawiki), database system (Mysql) on servers. We compare
WASP against Active-Idle and Delay-Doze approaches de-
scribed in Section II-C. To capture detailed energy breakdown,
we leverage RAPL interface for fine-grained power measure-
ment. The RAPL utility records the CPU and RAM power
values periodically. We configure WASP with the Ts, Tw and t
parameters that achieve energy-latency Pareto-optimality with
tail latency constraint set to 2.0. Similarly, for Delay-Doze,
we explore various values of the delay-timer and choose the
setting that achieves the best power with the same tail latency
constraint. From our experiments, we get actual CPU and
RAM energy consumption for each server. To get the overall
server energy, we also factored in the platform energy shown
in Table II.

Figure 6 shows the per-server energy breakdown in terms
of CPU, DRAM, and platform energy. With Active-Idle power
management, all the 10 servers have similar energy consump-
tion. With Delay-Doze, some of the servers are able to stay
in system sleep state for longer periods of time, thus saving
energy. With WASP, we can clearly see that most of the
servers drastically reduce energy consumption, and only a
minimal subset of servers (server#6 and #10) are used for
servicing jobs. Note that the energy consumption of server#10
is slightly higher than that of Active-Idle power management
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since the server is at a higher utilization level while other
servers remained inactive. Overall, WASP gains 39% reduction
in energy saving compared to Delay-Doze, and 56% energy
savings compared to Active-Idle.
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Fig. 7: System utilization for four bursty traces.
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B. Bursty Traces

As the raw NLANR network traces [14] present job arrivals
that are too infrequent for the server farm system with 10
application servers (less than 2%), we speed up the trace
by scaling the 24-hour trace to one hour. We choose four
traces, namely ny09, pa09, pa10 and uc09. Figure 7 shows

the utilization levels (scaled) for the four traces over one hour.
All traces exhibit bursty traffic patterns. For example, the ny09
trace has highly fluctuating utilizations ranging from 4% to
45% with a large number of spikes. To run the traces, we
set up a software stack similar to the one in Section VI-A.
Each request in the trace is serviced by a PHP script that
accesses a pre-defined set of pages randomly, and we note
that the average service time is about the same as Wikipedia
web requests.

To enable server provisioning, the Server Farm Power
Manager additionally samples the server farm utilization levels
based on the job arrival rates. Utilization is calculated as the
product of job arrival rate and average job execution time.
Standard deviation on the samples for utilization levels is cal-
culated every 120 seconds. The number of provisioned servers
is calculated dynamically (See Section III-B for details). Note
that, in our comparative studies, the delay-timer values are re-
evaluated for each trace such that best possible energy savings
are had while meeting the QoS constraints. Figure 8 shows
the energy consumption for the four bursty workloads using
Active-Idle, Delay-Doze and WASP. The energy is normalized
to the peak energy which is PeakPower ⇤ Time. The energy
reduction for WASP ranges from 34% to 40% compared to
Active-Idle. Even with the best delay timer settings, Delay-
Doze only achieves 9% to 12% energy reduction in bursty
workloads. We observe that due to the job arrival rate spikes
(especially for uc09), in order for Delay-Doze to meet the
tail latency constraint of 2.0, the delay timer has to be set to
larger values, and in turn the servers have limited chance to
enter system sleep state.

VII. RELATED WORK

Techniques to improve application and network energy
efficiency have been well studied in the literature [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. While DVFS-
based mechanisms have been proposed to optimize processor
power [16], [17], they are less effective for systems in low
utilization when idle power is dominant. As a result, prior
works [5], [9] propose architectural support to facilitate sleep
state management on multi-core servers that include schedul-
ing policies to delay, pre-empt and execute requests, and
artificially create idle and busy periods across cores of a server.



Lo et al. [25] leverage RAPL to dynamically adapt the runtime
power of data center according to job latency feedback. The
trends in server energy proportionality have been studied by
Ryckbosch et al. [26]. Sleepscale [4] utilizes speed scaling
and server sleep states jointly to reduce the average power
for a single server. We note that other approaches, such as
Knightshift [6], explore more specialized approaches such
as exploiting heterogeneity of processor cores to improve
energy. The model has been extended by Wong et al. [27]
to provide cluster-wide energy proportionality. However, to
preserve generality of our solution and study the applicability
of our techniques on many current warehouse scale systems,
we model homogeneous servers and cores with same capa-
bility. Through combining our proposed approach with the
energy improvement solutions on heterogeneous servers, we
can further boost energy savings.

Gandhi et al. [21], [28] have proposed a delayed-off mech-
anism that turns off a server after it is idle for a preset
period of time. Autoscale [28] reduces multi-server system
power by controlling the number of active servers while
satisfying the QoS. In our study, we show how system sleep
states can be smartly utilized instead of physically turning
a server off since this may introduce unacceptable spikes in
job latencies, especially for small jobs. Studies by Kanev et
al. [23] highlights the need for comprehensive sleep state
selection. Our work shows that in order to improve energy-
latency tradeoff, besides the selection of sleep state, a smarter
management of sleep states and their transitions is equally
important.

VIII. CONCLUSION

In this paper, we explored techniques that makes smart
use of processor/system low-power states and orchestrate
them adaptively with changing workloads for effective energy
management. We propose a two-level power management
framework that features a global server farm power manager
and a local server power controller. We performed an extensive
exploration of Pareto-optimal Energy-Latency tradeoffs. The
results show considerable energy savings on different synthetic
and real workloads. Our experimental results on real systems
show that WASP achieves up to 57% energy saving over a
naive policy that only uses a shallow processor sleep state, and
39% saving over a delay timer based approach, while keeping
the 90th percentile latency to be under 2⇥ average job service
time.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under CAREER Award CCF-
1149557 and CNS-1320226.

REFERENCES

[1] R. Brown, “Report to Congress on Server and Data Center Energy Effi-
ciency: Public Law 109-431,” Lawrence Berksleley National Laboratory,
2008.

[2] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a
Warehouse-sized Computer,” in ACM SIGARCH Computer Architecture
News, ACM, 2007.

[3] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware Cluster Management,” in Proceedings of Intl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems,
ACM, 2014.

[4] Y. Liu, S. C. Draper, and N. S. Kim, “SleepScale: Runtime Joint Speed
Scaling and Sleep States Management for Power Efficient Data Centers,”
in Proceedings of Intl. Symp. on Computer Architecture, IEEE, 2014.

[5] D. Meisner and T. F. Wenisch, “DreamWeaver: Architectural Support
for Deep Sleep,” ACM SIGPLAN Notices, 2012.

[6] D. Wong and M. Annavaram, “KnightShift: Scaling the Energy Propor-
tionality Wall through Server-level Heterogeneity,” in Proceedings of
International Symposium on Microarchitecture, 2012.

[7] HP, Intel, Microsoft, Phoenix, Toshiba, “Advanced Configuration and
Power Interface Specification,” 2015.

[8] Intel, “Intel Xeon Processor E5-1600/E5-2600/E5-4600 Product Fami-
lies,” 2012.

[9] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating
Server Idle Power,” in Proceedings of Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, 2009.

[10] V. Pallipadi, S. Li, and A. Belay, “cpuidle: Do nothing, efficiently,” in
Proceedings of the Linux Symposium, vol. 2, pp. 119–125, 2007.

[11] D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A Simulation
Infrastructure for Data Center Systems,” in Proceedings of International
Symposium on Performance Analysis of Systems & Software, 2012.

[12] Dell, HP, Intel and others, “The Intelligent Platform Management
Interface (IPMI).”

[13] E.-J. van Baaren, “Wikibench: A Distributed, Wikipedia based Web
Application Benchmark,” Master’s thesis, VU University Amsterdam,
2009.

[14] “The Univ. of Waikato NLANR Projects,” 2012. http://www.nlanr.net.
[15] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A Comparative

Analysis of Data Center Network Architectures,” in Proceedings of
International Conference on Communications, IEEE, 2014.

[16] S. Herbert and D. Marculescu, “Analysis of Dynamic Voltage/Frequency
Scaling in Chip-multiprocessors,” in Proceedings of Intl. Symp. on Low
Power Electronics and Design, ACM, 2007.

[17] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power Management and
Dynamic Voltage Scaling: Myths and facts,” in Proceedings of Workshop
on Power Aware Real-time Computing, 2005.

[18] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A Dual Delay
Timer Strategy for Optimizing Server Farm Energy,” in Proceedings of
Intl. Conf. on Cloud Computing Technology and Science, IEEE, 2015.

[19] J. Chen and G. Venkataramani, “A hardware-software cooperative ap-
proach for application energy profiling,” IEEE Computer Architecture
Letters, vol. 14, pp. 5–8, Jan 2015.

[20] J. Chen and G. Venkataramani, “enDebug: A Hardware–software Frame-
work for Automated Energy Debugging,” Journal of Parallel and
Distributed Computing, vol. 96, pp. 121–133, 2016.

[21] A. Gandhi and M. Harchol-Balter, “How Data Center Size Impacts
the Effectiveness of Dynamic Power Management,” in Proceedings of
Allerton Conf. on Communication, Control, and Computing, IEEE, 2011.

[22] J. Chen, F. Yao, and G. Venkataramani, “Watts-inside: A Hardware-
software Cooperative Approach for Multicore Power Debugging,” in
Proceedings of Intl. Conf. on Computer Design, IEEE, 2013.

[23] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs between
Power Management and Tail Latency in Warehouse-Scale Applications,”
in Proceedings of Intl. Symp. on Workload Characterization, IEEE,
2014.

[24] J. Chen, G. Venkataramani, and G. Parmer, “The Need for Power
Debugging in the Multi-core Environment,” IEEE Computer Architecture
Letters, vol. 11, no. 2, pp. 57–60, 2012.

[25] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards Energy Proportionality for Large-scale Latency-critical Work-
loads,” in Proceedings of Intl. Symp. on Computer Architecture, IEEE,
2014.

[26] F. Ryckbosch, S. Polfliet, and L. Eeckhout, “Trends in Server Energy
Proportionality,” Computer, vol. 44, no. 9, pp. 69–72, 2011.

[27] D. Wong and M. Annavaram, “Implications of High Energy Proportional
Servers on Cluster-wide Energy Proportionality,” in Proceedings of Intl.
Symposium on High Performance Computer Architecture, IEEE, 2014.

[28] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, Robust Capacity Management for Multi-tier Data
Centers,” ACM Transactions on Computer Systems, vol. 30, no. 4, p. 14,
2012.


