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Abstract—Deep neural networks (DNNs) are becoming increas-
ingly popular in real-world applications, and they are considered
valuable assets of enterprises. In recent years, a number of model
extraction attacks have been formulated that can be mounted to
successfully steal proprietary DNN models. Nevertheless, previous
model extraction attacks require either logical access to the target
models or physical access to the victim machines, and thus are
not suitable for performing model stealing in scenarios where an
outside attacker is in the proximity but at a distance.

In this paper, we propose a new model extraction attack named
CLAIRVOYANCE that exploits certain far-field electromagnetic
signals emanated from a GPU to steal DNN models at a distance
of several meters away from the victim machine even with some
obstacles in-between. Using CLAIRVOYANCE, an attacker can
effectively deduce DNN architectures (e.g., the number of layers
and their types) and layer configurations (e.g., the number of
kernels, sizes of layers, and sizes of strides). We use several case
studies (e.g., VGG and ResNet) to demonstrate its effectiveness.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have been
widely used for many artificial intelligence applications, such
as computer vision [14], natural language processing [25],
speech recognition [9], autonomous driving [21], [4], and
gaming [23]. Given their increasingly high design cost, DNN
models are often considered valuable pieces of intellectual
property (IP) [37]. Naturally, they become the target of at-
tackers who attempt to steal these models for certain illicit
purposes (e.g., establishing plagiarized AI services [35]).

Recent advances in model extraction attacks have clearly
demonstrated the ability of attackers in stealing DNN mod-
els. These attacks mainly fall into two categories: learning-
based approaches [19], [20] and side-channel-based ap-
proaches [31], [16], [12], [28], [13], [32], [2], [1], [37].
The learning-based approach usually requires an attacker to
interact with the victim model and related datasets to deduce
the architecture and parameters of the model [19], [20].
Apparently, this type of methods needs the attacker to have
logical access to the model (e.g., model query). The second
class of model extraction attacks exploits various sources of
side-channel information including signals both in the digital
(e.g., microarchitecture attacks [31], [16], [12], [28], [13]) and
physical domains (e.g., [32], [2], [1]) to infer DNN model
secrets. Note that to exploit the logical side channels such
as cache or bus contention, adversaries need to have logical
access to the victim model’s machine and share the hardware
resources. When the attacker does not have logical access to

the victim machine but is in its proximity, he/she may leverage
physical side-channel information to achieve model extraction.

In fact, the state-of-the-art physical side-channel attacks on
stealing DNNs are mainly based on electromagnetic (EM)
signals. However, all the existing works exploit near-field EM
signals to extract DNN models. To measure such signals, the
attacker has to get very close to the victim devices [32], [1]
(e.g., the sensor has to be mounted to the cable of GPU power
supply in [1]), and sometimes even needs to decapsulate the
targeted chip packages [2]. These methods are not applicable
in common scenarios where the victim machines are physically
isolated (e.g., wall-gapped) and are located several meters
away from the attacker’s reach. We note that a stealthy and
realistic DNN model extraction attack by exploiting physical
side channels at a distance has not been demonstrated.

In this paper, we propose CLAIRVOYANCE, a strong and
realistic far-field EM-based model extraction attack, allowing
the attacker to extract DNN model information at a distance
of several meters away from the victim machine even with
an obstacle (e.g., a wall) in-between. Specifically, we leverage
the EM emanations from the GPU memory clock, which can
propagate very far and contain enough information to recon-
struct the DNN models. To the best of our knowledge, our
work serves as the first far-field EM-based model extraction
attack that steals DNN models running on a modern GPU at
a distance.

We make the following contributions in this work:
1) We propose the first realistic DNN model extraction

attack that can be mounted at a distance of several
meters away from the victim machine equipped with
a GPU. The long-range contactless exploitation poses a
great threat as it can steal the DNN models much more
stealthily than existing approaches.

2) We formulate a signal processing technique that can
greatly increase the signal-to-noise ratio (SNR) to reveal
hidden features of our interest in noisy measurements.
This technique is necessary when the distance between
the attacker and victim is large or they are separated by
obstacles such as thick concrete walls.

3) We demonstrate successful attacks by extracting the
architecture of DNN models (including the number
of layers and the types of layers) and also inferring
the specific configurations of each layer (including the
number of kernels, the sizes of kernels, and the sizes



of strides) based on the statistical analysis of the layer
length.

II. BACKGROUND

In this section, we first briefly describe the DNN models,
and then we present basics about architecture of discrete GPUs
that are widely used nowadays for deep learning systems. We
also provide background information on the EM side-channel.

A. Deep Neural Networks

A deep neural network (DNN) is a computational model
composed of multiple processing layers to learn abstract
representations of data. The characteristics of a DNN are
determined by two major aspects: (1) network architecture
including the layer width (the number of units or the number
of kernels, kernel size, stride, padding), layer depth, layer
types, and connection topology between layers; (2) model
parameters including weights, biases, and batch normalization
parameters [32], [12].

The most commonly used structures of DNN are the chained
structures and the length of the chain gives the depth of the
model. With the chained structures, there are various ways to
connect a pair of layers. For example, in the default forward
neural networks or fully connected networks, every input unit
is connected to every output unit. In convolutional networks
that are designed for processing grid data (image) or time-
serials data, layers are sparsely connected [7]. Usually, differ-
ent types of layers are put together to accomplish a certain
task together. For example, all of the popular DNN models
for image processing such as AlexNet [14], VGGNet [24],
ResNet[11], Inception-v3 [27], Inception-v4 [26] contain con-
volutional layers, fully connected layers, and pooling layers.
However, they have different characteristics and performances
because of different architecture designs.

B. GPU Architecture

Modern GPUs consist of a number of streaming multi-
processors (SMs), each containing a number of streaming
processor (SP) cores, a multithreaded instruction fetch and
issue unit and private/shared caches [5]. In each SM, multiple
threads are grouped into a warp, which is scheduled by a warp
manager. These threads share an instruction stream and will
be executed simultaneously.

To increase the performance of handling large data, a GPU
is often equipped with a large amount of DRAM that is shared
among all the SMs [18]. This GPU memory system is managed
independently from the host memory system and the data is
transferred between the host memory and GPU memory via
the PCIe bus [34]. There are multiple memory controllers
which enables parallel access to the memory to achieve high
bandwidth and high throughput [30].

C. Electromagnetic Emanations

Different computation activities induce distinct dynamic
current changes in circuits. The current changes further lead

to electromagnetic (EM) emanations. Therefore, the EM em-
anations carry the information about the computation activi-
ties. Such information has been exploited to mount realistic
attacks [6], [15], [34], [33] as well as to help build effective
defenses [36], [8], [17].

The EM signals are distributed widely across the spectrum.
Periodic EM signals are easily to identify. For example, the
EM signals created by periodic circuit activities like clocking
and DRAM refreshing. Such EM signals are strong and can
propagate very far. Moreover, some signals such as the DRAM
clock signal are unintentionally modulated by memory access
activities in the form of amplitude modulation (AM) [3].

III. THREAT MODEL

In this paper, we assume that an attacker intends to steal the
DNN model running on a victim machine. The victim machine
is equipped with a modern NVIDIA GPU on which the target
DNN model is executed. Although the attacker is assumed to
be in the physical proximity of the victim machine, they may
be separated by several meters. In addition, there may be some
obstacles between the attacker and the victim machine (e.g., a
wall). Under such a threat model, the attacker and the victim
machine may be in different office rooms or cubicles, which
makes our model extraction attack very stealthy and practical.
Note that this threat model is much less restrictive and more
realistic than the ones in prior works that assume the attacker
has direct contact to victim machine’s hardware (e.g., GPU
power cable [1]).

Even though the attacker does not have any physical access
to the victim machine, we assume that the attacker can find
himself/herself an identical or similar GPU to the one used by
the victim. The attacker uses this personal GPU for profiling.
Moreover, the DNN model may contain various types of layers
such as convolutional layer, fully connected layer, add layer,
pooling layer and activation layer.

IV. EM SIGNALS OF OUR INTEREST

The above-mentioned threat model arguably advocates an
exploitation of certain EM side-channel information. In this
section, we present an overview on the EM signals that we
exploit for stealing the DNN model running on a modern GPU.
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Fig. 1. Spectra of NVIDIA RTX 2080’s EM signals at around 1700 MHz.
(A) when the system is idle, and (B) when the GPU is running a DNN.
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Fig. 2. A trace of EM signals at 1700 MHz when an NVIDIA RTX 2080 is running a DNN. BN: Batch Normalization layer, Conv: convolutional layer;
Add: add layer; Pool: average pooling layer; Flat: flatten layer; Dense: fully connected layer. Horizontal axis represents time.

In [34], Zhan et al. observed some interesting phenomena.
Basically, they found that the performance level of a modern
GPU usually changes rapidly to seek a balance between
performance and power consumption, and when a performance
level is on/off, they observed the appearance/disappearance of
clear EM signals at the corresponding GPU memory clock
frequencies in the spectrum. (They further showed that such
behavior can be exploited for inferring sensitive information.)
More interestingly, they observed that for an NVIDIA GPU,
if its performance level is fixed, there appears strong EM
emanations that are inadvertently AM-modulated by the GPU
memory accesses. The EM emanations are around the fre-
quency that is one eighth the data rate in the cases of all
NVIDIA GPUs. We verified their finding and will use such
EM emanations to extract DNN models in this paper.

We notice that when an NVIDIA GPU runs a DNN model,
its performance level will be bumped to a high level (usually
the second highest) and stay there. Therefore, the EM signals
of our interest will be at one eighth the memory transfer rate of
that performance level. For example, given an NVIDIA RTX
2080 GPU, we find that when a DNN model starts running, its
performance level will stay at level 31 whose memory transfer
rate is 13600 MHz, and thus the EM signals of interest should
be at 1700 MHz. Figure 1 illustrates this example. Figure 1
(A) shows the spectrum when the GPU is idle and Figure 1 (B)
shows the spectrum when the a DNN model is running. We can
see that there are noticeable signals in the frequency domain
around 1700 MHz when the GPU runs the DNN model.

Note that there are many clear spectral components around
1700 MHz in Figure 1 (B), instead of just a single one.
This phenomenon is due to a feature named spread spectrum
clocking (SSC) [22], which varies the the clock frequency in a
range so that the time spent by the clock signal at a particular
frequency is reduced and the energy is spread over that range
of frequencies [10]. The SSC technique is used for meeting
the electromagnetic compatibility (EMC) standards.

Since different types of layers in a DNN model are im-
plemented by different GPU kernels [1] and each kernel has
its own way of accessing data, we speculate that executing
a layer can potentially induce a distinct pattern of memory

1NVIDIA RTX 2080 has five performance levels (0, 1, 2, 3, and 4). Level
3 is its second highest performance level.

access activities. The pattern is determined by the type of
layer, configurations of the layer, and also input shape of data.
Given the fact that the EM emanations of our interest are AM-
modulated by memory access activities [34], we should be able
to infer some of the DNN model details from the EM traces.

To verify this hypothesis, we performed several experiments
and Figure 2 shows an example. From the example, we can
see that different types of layers induce distinct features in
the trace which can be utilized to identify the types of layers.
For instance, a batch normalization layer contains tall spikes
with a short time interval; a convolutional layer starts with
intense oscillations and ends with a gap; the outer envelope of
a convolutional layer is similar to an arc; the trace of a dense
layer is usually evenly distributed which is different from a
trace of convolutional layer. Even though the length, height of
the layer traces are affected by the network hyperparameters
such as number of kernels, kernel size, stride, and input size,
one can still recognize the type of layers by some relatively
stable features such as the features of a convolutional layer
described above.

V. SIGNAL ENHANCEMENT

Despite the fact that we can infer DNN layer types from
the EM emanations of our interest, these signals can become
hard to exploit when the attacker is far away from the victim
machine and/or when there are some physical obstacles like
walls in-between. In such situations, the signal-to-noise ratio
(SNR) can be significantly lowered such that the patterns
used to infer DNN layer types may become unrecognizable.
Therefore, we need to apply some signal processing techniques
to enhance the signal.

Considering that we mainly leverage low-frequency com-
ponents in the signal to identify different DNN layers, using
a low-pass filter to remove high-frequency noise is seemingly
effective to improve the SNR. However, designing such a low-
pass filter is more challenging than it may appear. Since the
SSC disperses the clock signal energy in a wide frequency
range, as shown in Figure 1 (B), if the cutoff frequency is
too low, some useful low-frequency features will be filtered
out. On the other hand, if the cutoff frequency is too high,
the low-pass filter will fail to remove all high-frequency noise
effectively. This dilemma can not be solved by simply select-
ing an appropriate cutoff frequency. To solve this problem,
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Fig. 3. Traces of EM signal of interest measured at a distance of 2 meters away from the victim machine with a wall in-between. (A) the original trace; (B)
the same trace after direct low-pass filtering; (C) the same trace after de-spreading and low-pass filtering.

we combine the de-spreading technique proposed in [36] and
a low-pass filter.

A. SSC De-spreading

We apply the de-spreading technique proposed in [36] to
gather the scattered energy back together to facilitate noise
reduction. The main idea is summarized in the following.

Given a clock signal whose frequency is fc, SSC uses FM-
modulation to vary the clock frequency in accordance with a
signal fm(t) that is generated in the SSC hardware chip but
undocumented. Normally, fm(t) is a periodic function, namely
we have fm(t) = fm(t + Tm) where Tm is the fundamental
period of fm(t). At time t, the instantaneous frequency fi(t)
of the clock signal becomes:

fi(t) = fc +Kfm(t) , (1)

where K is some proportionality constant. In an analytic form,
the effect of SSC is equivalent to multiplying the clock signal
by a complex exponential function θ(t), which is defined as:

θ(t) = ej2π
∫ t
0
Kfm(t)dt , (2)

where j denotes
√
−1. Hence, for the purpose of de-spreading,

we just need to estimate θ(t) and multiply the measured signal
by θ−1(t).

The de-spreading technique presented in [36] can be sum-
marized as the following steps:

1) Collect a sequence of samples at the clock frequency fc.
(In our case, the attacker can leverage the same GPU of
his/her own and use the driver to set the performance
level for collecting this sequence.)

2) Compute a phase difference sequence, i.e., δl = φl+1 −
φl, where φl is the phase angle of the lth sample.

3) Find the fundamental period Tm of fm(t) by observing
the repeated patterns in the phase difference sequence.

4) Derive a smaller sequence ∆ = {δ1, δ2, ...} over one
Tm. (To reduce noise, average multiple ones to obtain
∆.)

5) Align ∆ with the targeted EM signals by cross-
correlation.

6) Multiply each sample by e−jΦ, where Φ is the running
sum of the aligned elements in ∆, to perform de-
spreading.

For example, Figure 4 shows the spectrum of the EM signal
of interest after de-spreading when running a DNN model on
an NVIDIA RTX 2080 GPU. Compared with Figure 1 (B) that
shows the spectrum without de-spreading, we can see that the
energy of the signal is now more concentrated in a narrow
frequency from 1699.8 MHz to 1700.2 MHz.

B. Low-Pass Filtering

To improve the signal’s SNR, we remove the high-frequency
noise using a low-pass filter. We select the appropriate cutoff
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Fig. 4. Spectrum of the EM signal of our interest after de-spreading

frequency, as shown in Figure 4. Empirically, we find that
keeping the frequency components in the band between 1699.3
MHz to 1700.7 MHz as shown in 4 and removing the
frequency beyond this range gives a clear time series trace
without losing the important features.

Figure 3 (A) shows a trace of the EM signal of our interest
that is captured at a distance of 2 meters away from the victim
machine with an office wall in-between. From this figure, one
can barely recognize the DNN layers and their types because
the detailed features are concealed by high-frequency noise.
Figure 3 (B) shows the same trace after applying a low-pass
filter directly without performing de-spreading first. While it
is clearer, some important low-frequency features are actually
lost. For example, there is a convolutional layer between the
240000th and 244000th samples. In general, to identify a
convolutional layer, we should search for features such as
an arc shape envelop and oscillations at the layer boundaries.
However, these critical features are lost in trace (B) and can
hardly be recognized from trace (A) due to noise. On the
contrary, after de-spreading and filtering, we can see that
most of the important layer features are preserved in Figure 3
(C) and also high-frequency noise is removed at the same
time. From this example, one can find the effectiveness of our
proposed signal processing techniques.

VI. MODEL EXTRACTION

We extract the DNN model from the captured EM traces in
two steps – step 1 is to recover the structure, and step 2 is
to estimate each layer’s configuration including the number of
kernels, kernel size, and stride.

A. Topology Recovery

We recover the topology of a DNN by identifying the types
of layers and the number of layers. We find that different
layer types can induce different features in the captured EM
traces, which makes our topology recovery possible. Although
different layer configurations and/or input sizes can change the
lengths and heights of corresponding trace segments, we notice
that the characteristic features remain the same. For example,
we observe that trace segments corresponding to convolutional
layers with different numbers of kernels or strides have similar

shapes. As shown in Figure 2, we can find two convolutional
layers by identifying the oval shape envelope with oscillation
at the beginning and a big gap at the end of the trace.

The execution time of a layer can also give us some hints
about the layer type, especially helping us decide whether
it is a weighted layer or not. Usually, a weighted layer (a
convolutional layer or a fully connected layer in feedforward
networks) has a longer execution time than a pooling layer or
an add layer with similar input sizes. In Figure 2, we can also
locate the dense layer combining the shape and the length of
the trace segment.

Before launching the attack, the attacker can learn the EM
trace features corresponding to different layer types on his/her
own machine that is installed with the same type of GPU as
the victim machine.

B. Layer Configuration Estimation

Aside from layer types, we need to recover the configuration
of convolutional layers as well, including kernel sizes, the
number of kernels, and strides. We find that such information
can be estimated through the length of a trace segment
corresponding to a layer.

We use C = (k, s, n) to denote a specific configuration,
where k denotes the kernel size, s denotes the stride size, and
n is the number of kernels. Theoretically, the configuration
search space is infinite, because each of the three elements
has infinite possible values. However, there are actually a few
possible values for each element of P in real-world DNN
models. Table I lists the kernel sizes and strides used in the
most successful CNNs. We can see that kernel sizes 3 × 3,
5×5, 7×7 are the most commonly used kernels size in popular
CNNs. Moreover, at design time, a layer with a large kernel
size is often replaced by multi-layers with smaller kernel sizes,
which can reduce computation cost. For example, a 5×5 kernel
size layer can be replaced by a two-layer network with 3× 3
kernel size for cost saving purpose [27]. We can also see that
stride 1 and 2 are the most commonly used ones. There are
layers in some DNNs using stride 4, but we do not see designs
with strides larger than that. We also find that 32, 64, 128,
256, and 512 are the most frequently used kernel numbers.
Therefore, C actually has a very limited search space if we
only consider reasonable configuration values.

TABLE I
THE KERNEL SIZES (k) / STRIDES (s) IN POPULAR CNNS

AlexNet VGG ResNet Inception-v3 Inception-v4

11× 11/4 3× 3/1 7× 7/2 3× 3/1 3× 3/2
5× 5/1 3× 3/1 3× 3/2 3× 3/1
3× 3/1 3× 3/2

With a limited number of elements in the search space of C,
the input sizes are also commonly limited to a few possibilities
such as 28× 28, 64× 64, 96× 96, 224× 224, and 299× 299.
We find that the input fed to a DNN is often downsized even
if its original size is much bigger.



We have conducted the statistics on the lengths of EM trace
segments corresponding to layers with different configurations.
We observe that, given a possible input size from the list
aforementioned and a possible configuration C, the measured
length of the EM trace segment has a certain distribution.
There are two relationships between the trace segment length
distributions. In the first one, there is considerable overlap
between two length distributions. For example, Figure 5 shows
the length distributions of two trace segments corresponding
to two convolutional layers with different configurations. In
this case, given a single trace segment length, it is hard to
recognize directly which configuration it should be mapped
to. However, we can capture the EM traces for multiple DNN
runs to try to find the most plausible estimation following the
likelihood principle. In the second relationship, there is barely
any overlap between two length distributions. In such a case,
we can directly recognize which configuration a layer should
have.
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Fig. 5. Trace segment length distributions, where CA = (3, 1, 64) and CB =
(5, 4, 256).

VII. EVALUATION

This paper documents our preliminary work. In this section,
we show some of our preliminary results.

A. Data Collection

We use a USRP B210 software defined radio (SDR) and a
RFSPACE TSA900 antenna to collect the EM traces. We use
the GNU Radio to manage the entire measurement process.
The center frequency of the SDR is set to one eighth the
memory transfer rate of the performance level at which DNN is
running (e.g., 1700 MHz in terms of MSI RTX 2080). Firstly,
the antenna is placed 2 meters away from the victim machine
with no obstacles in-between. Secondly, the antenna is placed
2 meters away from the victim machine with a 16 cm wall
(made of drywall) in-between as shown in Figure 6.

WallWall

Attacker's Office Victim's Office

Fig. 6. Setup for the wall-penetrating model extraction attack.

B. DNN Layers Identification

We can reconstruct the topology of a chained DNN by
identifying layers from the EM signals of interest. We first
analyze the EM traces from the typical CNNs such as VGG
and ResNet with layers ranging from convolutional layers,
dense layers, batch normalization layers, maxpooling layers,
and add layers. The input image resolutions are chosen from
224∗224 and 96∗96. Actually, the larger resolutions the input
image has, the stronger and clearer features in EM traces it
can induce.

We first identify the skeleton of a VGG16 network from
the EM trace with our eyes based on the typical features of
different types of layers. Figure 7 is a VGG16 EM trace mea-
sured from 2 meter away. We use layer features to recognize
the different types of layers. To clearly show the details of
EM trace, the entire trace is split into two parts. Figure 7(a)
is the first half part of the trace and Figure 7(b) is the second
half part of the trace. Layers such as convonlutional layers and
dense layers can be easily identified from the trace because
of their unique features. Convonlutional layers usually start
with high spikes caused by intense data movements in the
GPU memory at the beginning of each kernel. An arc shape
envelope and a gap at the end of the trace help us to identify
the convonlutional layer. The trace of a dense layer is evenly
and symmetrically distributed which is different from a trace of
convolutional layer. The sharp dips caused by synchronization
help us to locate the boundaries between layers. However,
layers taking short execution time to compute are hard to
identify from the traces. These layers include pooling layer,
ReLU layer, softmax layer, and flatten layer, because their
GPU memory activities are not as intense as other layers.

The input size also has a significant impact on the shape
especially on the length of the trace segments corresponding
to a layer. For example, comparing the lengths of the second
convoluntional layer with that of the third convoluntional layer
in Figure 7(a), the length of the third convoluntional layer is
about half of the length of the second convoluntional layer.
We can deduce that there is a dimension reduction (such as
pooling) after the second convoluntional layer. Layers at the
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Fig. 7. A VGG16 EM trace. Conv represents a convolutional layer, D represents a dense layer.
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(a) The first half of ResNet18 trace
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Fig. 8. A ResNet18 EM trace. Conv represents a convolutional layer, Dense represents a dense layer.

beginning and end of a DNN model are hard to recognize for
lack of information from the trace. The first convonlutional
layer and the last dense layer only leave short spikes which
are caused by short execution time due to the relatively small
input tensor sizes. Usually the input size of the first layer of a
CNN is small because of a small number of channels (e.g., 3)

in the image data. With a narrow sharp spike at the beginning
of a trace, we can infer it is a convolutional layer. With a short
sharp spike at the end of the trace, we can infer that it is a
dense layer with a small input size.

We can also obtain a pooling layer from the lengths of trace
segments corresponding to neighboring layers. We can infer



TABLE II
TRACE SEGMENT LENGTH STATISTICS FOR INPUT SIZE 224× 224× 64.

kernel size/stride/kernel# 3/1/32 3/2/32 5/1/32 5/2/32 3/1/64
length 14192±363 9658±271 64895±1108 25517±190 27479±276

kernel size/stride/kernel# 3/2/64 5/1/64 5/2/64 3/1/128 3/2/128
length 10047±143 101470±666 26150±300 52760±247 17853±277

kernel size/stride/kernel# 5/1/128 5/2/128 3/1/256 3/2/256 5/1/256
length 197335±4470 47328±147 103770±496 35178±451 279185±1094

kernel size/stride/kernel# 5/2/256 3/1/512 3/2/512 5/1/512 5/2/512
length 92130±128 164091±1513 67564±171 578265±8133 181575±368

TABLE III
TRACE SEGMENT LENGTH STATISTICS FOR INPUT SIZE 96× 96× 64.

kernel size/stride/kernel# 3/1/32 3/2/32 5/1/32 5/2/32 3/1/64
length 3564±213 1470±126 28080±540 6280.2±136 5411.2±170

kernel size/stride/kernel# 3/2/64 5/1/64 5/2/64 3/1/128 3/2/128
length 12316±394 29716±631 17306±255 10697±134 16708±385

kernel size/stride/kernel# 5/1/128 5/2/128 3/1/256 3/2/256 5/1/256
length 23257±827 11602±258 20128±249 18495±423 81771±531

kernel size/stride/kernel# 5/2/256 3/1/512 3/2/512 5/1/512 5/2/512
length 32954±568 39326±373 23815±590 146786±4736 46727±578

its existence by comparing the input and output dimension
changes from the length of segments. There is a pooling
layer with a stride size that is larger than 1 if there is a
dimension reduction which can be recognized directly from
their length of trace segments. For example, in Figure 7(a),
we can clearly recognize that there are dimension reductions
in the second, the forth, the seventh, the tenth convolutional
layers by comparing their neighboring layers’ trace segments.
The length reduction of the following layer indicates there is a
dimension reduction. This dimension change is usually caused
by a pooling.

Short layers such as ReLU activation function, add layer,
and pooling are not obvious from the EM trace and can hardly
be distinguished from each other. For the activation function,
each convolutional layer or dense layer is usually followed
by a ReLU activation function unless it is the last layer of
the neural network. If it is a sigmoid activation function, it is
recognizable due to a longer length.

Figure 8 is the EM trace corresponding to ResNet18 that
is measured from 2 meters away. Similar to the VGG16
trace, we can recognize the convolutional layers and dense
layer easily with our eyes by locating the unique features of
a convolutional layer or a dense layer. The trace segments
corresponding to an add layer or a batch normalization layer
are also different from that of a convolutional layer or a dense
layer. Therefore, an add layer or a batch normalization layer
can be distinguished from a convolutional layer or a dense
layer. However, they are hard to distinguish from each other
because they have similar looks.

The layers are still recognizable when the EM traces are
collected with a wall in-between. Figure 9 is a trace corre-

sponding to VGG16 and Figure 10 is a trace corresponding to
ResNet18. They are collected behind a 16 cm thick wall (made
of drywall). Comparing with the traces shown in Figure 7 and
Figure 8, the amplitudes of traces measured behind a wall are
attenuated by the obstacles. Nevertheless, with the proposed
signal processing techniques, we can still recover the DNN
models as there is no wall in-between.

C. Layer Configuration Estimation

The configuration C = (k, s, n) of a commonly used
convolutional layer can be recovered by the aforementioned
method introduced in Section VI-B. We collect and analyze the
trace segment lengths with respect to different configurations.
Table II shows the length statistics of input size 224×224×64.
The length instances are represented by the mean and standard
deviation of number of samples. From this table, we can see
that layers with different configurations can be distinguished
from each other due to the different trace segment length
distributions. In addition, Table III given the length instances
when the input size is 96×96×64. If there are two instances
that are close, we can further analyze the normal distribution of
the two instances as shown in Figure 5. From various statistic
cases like the ones shown in Table II and Table III, we can
map trace segment lengths to different configurations.

VIII. MITIGATION

As mentioned in [1], the EM signal is strong enough to be
used to launch a model extraction attack when the input size
and batch size are large enough to keep the GPU running at
a high-load level. We observe that, with new and powerful
NVIDIA GPUs like RTX 2080, when the input image pixels



sizes that are equal or larger than 96 × 96 × 3 with a batch
size 1, the EM emanations of interest are noticeable enough
to launch a model extraction attack. However, layer features
are not distinguishable when the input sizes are smaller (e.g.,
when image size is 28×28×3 and batch size is 3). Therefore,
we can significantly reduce the input image pixel size first to
avoid strong EM emanations of interest. However, this may
have a negative impact on the performance of DNN.

The second mitigation approach is to generate some back-
ground noises by running some other applications on the GPU.
For example, one can co-allocate a small DNN inference
process when launching a DNN model for inference. It will
consume some additional GPU resources in this case. How-
ever, it can add noise into the EM emanations of our interest,
which make it harder to precisely extract the DNN structure
and the layer configurations.

Another mitigation approach is to insert many short layers
(e.g., insert 10 ReLU layers between the third and forth con-
volutional layers) deliberately without changing the original
function of a DNN model. The many short layers inserted at
some location can mislead the attacker to derive an incorrect
DNN architecture.

IX. RELATED WORK

Model extraction attacks targeting at DNN models try to
steal their topology, parameters, hyper-parameters, or function-
ality. The first type of model extraction attacks use learning-
based methods to derive the topology, parameters, hyper-
parameters, or the functionality of a DNN model. Knockoff
Nets [20] learns a new DNN model with functionality similar
to the victim DNN by querying the black-box victim DNN.
With the similar method, the work in [19] learns a DNN
model by querying the black-box victim DNN. The work
in [29] learns the hyper-parameters of regularization term in
the objective function of a machine learning models such as
regression, logistic regression, support vector machine (SVM).
In spite of the significant contributions made in these work,
there are still some limitations. These methods either require
access to the victim model or the training dataset. The learning
based methods also require large amount of computation
power and time.

Another type of model extraction attacks is to leverage
side-channel information. Such model extraction attacks can
be further classified into two categories. The first kind is to
use logical side-channel information to infer the DNN model.
Cache Telepathy [31] use cache timing side channel to infers
dimension sizes. Rendered Insecure [16] infers the model from
a co-located process in a cloud environment by monitoring
the performance counters of a GPU. DeepSniffer [12] and
Hermes [37] extract complex DNN models by snooping the
GPU memory bus and/or PCIe bus. The other class is to
infer neural network models by leveraging physical side-
channel information, especially the EM one. Recent work
using EM side-channel information to extract DNN topology
and to estimate parameters can be further classified into two
categories. The first class is to extract a neural network model

from an embedded device or a FPGA as shown in [32], [2]
using near-field EM signal. To clear detect the near-field EM
emanations from these devices, the devices may need to be
decapsulated. The DNN architectures are usually simple due
to the limited resource of these devices. The second category
as demonstrated in [1] can recover the topology and estimate
configurations such as the number of kernels of a complex
DNN model from a GPGPU using near-field EM information
of the GPU power supply cable. However, they need to have
access to the victim machine to launch the attack because their
sensor has to be mounted on the power cable of the GPU
power supply.

X. CONCLUSION & LIMITATION

Conclusion: In this work, we propose CLAIRVOYANCE to
stealthily extract the DNN models at a distance by leveraging
the EM side-channel information from a GPU. Our method
does not need to have access to the victim machine or
have physical contact with the victim machine in any form.
Our proposed attack can “see” the number of DNN layers
and recognize their types. We can also estimate the layer
configurations such as the number of kernels, kernel sizes,
and strides by simple statistics analysis.

Limitation: This approach cannot steal the parameters of
the DNN model. It becomes very hard for our approach to
extract a model when the input sizes and the batch sizes are
very small. It is also very hard to distinguish very simple layers
such as ReLU, batch normalization, and flatten because they
have similar features in the trace. Therefore, we need some
other heuristics.
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APPENDIX A
ADDITIONAL EXPERIMENTS RESULTS

Figure 9 is a EM trace corresponding to VGG16 collected
with a wall in between. The trace is similar to one in Figure 7
when there are no obstacles in between. Therefore, we can
directly distinguish the layer types such as convolutional layers
and dense layers. We can also deduce the existences of pooling
layers from the layer length changes. ReLU layers are not
obvious from the trace, but we can guess the existence of
a ReLU layer behind each convolutional layer or dense layer
(except the last layer) since it is the most often used activation.

Figure 10 is a EM trace corresponding to ResNet18 col-
lected with a wall in between. The trace is also similar to
the one in Figure 8 when there are no obstacles in between.
Similar conclusions can be drawn from this figure.
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(a) The first half of VGG16 trace over a wall

0

0.5

1

1.5

2

2.5

3

3.5
10 -3

Conv Conv Conv Conv D D D

(b) The second half of VGG16 trace over a wall

Fig. 9. A VGG16 EM trace. Conv represents a convolutional layer, D represents a dense layer.
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(a) The first half of ResNet18 trace over a wall
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Fig. 10. A ResNet18 EM trace over a wall (made of drywall). Conv represents a convolutional layer, Dense represents a dense layer.


